Efficient posterior sampling for diverse super-resolution with hierarchical VAE Prior

Published in 19th International Joint Conference on Computer Vision Theory and Applications (VISAPP2024), 2024

Recommended citation: Jean Prost, Antoine Houdard, Nicolas Papadakis, Andrés Almansa

We investigate the problem of producing diverse solutions to an image super-resolution problem. From a probabilistic perspective, this can be done by sampling from the posterior distribution of an inverse problem, which requires the definition of a prior distribution on the high-resolution images. In this work, we propose to use a pretrained hierarchical variational autoencoder (HVAE) as a prior. We train a lightweight stochastic encoder to encode low-resolution images in the latent space of a pretrained HVAE. At inference, we combine the low-resolution encoder and the pretrained generative model to super-resolve an image. We demonstrate on the task of face super-resolution that our method provides an advantageous trade-off between the computational efficiency of conditional normalizing flows techniques and the sample quality of diffusion based methods.

Arxiv link